Revision: 11 Sep 2025 · Version: 0.1 (first draft) · Authors: Mustafa Aksu, ChatGPT
Summary. We model the hydrogen atom in Relational Time Geometry (RTG) as a fixed
three‑node proton triad (inside the SU(2) window) that binds a single electron node
(inside the U(1) window). With the scheme‑invariant baseline amp=none, the binding
amplitude becomes regulator‑independent; differences between Litim / sharp / Gaussian
enter only through the window weight w(x). Simulated‑annealing searches over a small
grid of electron couplings yield stable plateaus with dimensionless total energies in the
band E ≈ −2.7 … −3.3 and radii from the beat‑distance map in the
104–105 fm range once near‑resonant outliers are trimmed—consistent with a
Bohr‑scale envelope when interpreted through the RTG↔SI calibration.
Contents
1) Model & observables
1.1 Proton seed (fixed)
The proton is a three‑node bound state in the SU(2) window, obtained from the
proton search script. For hydrogen runs we load a canonical seed file:
proton_seed.json // emitted by rtg_hydrogen.py
{
"proton_nodes": [
{"omega": &omega1, "phi": &phi1, "spin": +1},
{"omega": &omega2, "phi": &phi2, "spin": -1},
{"omega": &omega3, "phi": &phi3, "spin": +1}
]
}
This file mirrors the best proton triad (ω, φ, spin) exported by the
updated proton script (see CLI below). No proton parameters are tuned for hydrogen;
the proton is treated as a rigid internal cluster during the electron search.
1.2 Energy functional (explicit)
Windows and weights follow the EFT convention with
\(x \equiv |\Delta \omega|/\Delta\omega^\*\) and window weight \(w(x)\):
w_litim(x) = Θ(1-x)·(1 − x²)
w_sharp(x) = Θ(1-x)
w_gaussian(x)= exp(−x²)
The per‑link energy amplitude is explicit:
A_ij^(energy) = (3/4)·[1 + cos(Δφ_ij)] · w(x_ij) (angular phases)
Hydrogen total energy (proton triad fixed, one electron “e”):
E_total = E_bind + E_curv + E_win.
E_bind = − J_e · Σ_{p ∈ proton} A_{ep}^(energy) // 3 ep links
E_curv = (κ_e/2) · Σ_{p} (wrap(φ_e − φ_p))² // quadratic phase smoothness
E_win = λ_win · 1[x_e ∉ U(1)], with x_e = |ω_e|/Δω*
Scheme‑invariant baseline: amp=none is used everywhere, so binding is
regulator‑independent; Litim/sharp/Gaussian differ only through w(x) inside
A_ij^(energy).
1.3 Size & distance metrics
We report two radius proxies:
- Beat‑distance radius \(r_\star\): from the electron–proton beat,
using the page‑standard RTG↔SI map (phase velocity \(v_{\text{phase}}\), critical
bandwidth \(\Delta\omega^\*\)). This is the “raw” kinematic radius and is
sensitive to near‑resonant \(x \to 0\) outliers. - Bohr‑band estimate \(r_{\mathrm{Bohr}}\): a trimmed metric (median or
10–90% trimmed mean over accepted cases) meant to capture the envelope scale,
robust to occasional near‑resonant spikes.
2) Search algorithm & acceptance
- Annealing. Geometric cooling with local proposals
\(Δ\omega \sim 0.08\cdot(Δ\omega^\*)·10^{-2}\) and \(Δ\phi \sim 0.25\), early lock‑in
if a 200‑step plateau satisfies \(|ΔE|<10^{-7}\). - Acceptance gates.
- Plateau window 200 steps with tolerance \(ε_E=10^{-7}\).
- Electron inside
U(1)window (small \(E_{\text{win}}\)). - (Optional) Form‑factor check on future runs: charge normalization \(G_E(0)=1\pm 0.02\).
3) Results
Energetics. Over
\(J_e \in \{0.8,1.0,1.2\}\), \(κ_e \in \{0.05,0.10\}\) (and refined grids),
best plateaus fall in three clear bands, monotone in \(J_e\) and only weakly dependent
on \(κ_e\):
- \(J_e=0.8\): E ≈ −2.0 … −2.2
- \(J_e=1.0\): E ≈ −2.5 … −2.8
- \(J_e=1.2\): E ≈ −3.1 … −3.4

Best‑case energy per grid point. Monotone decrease with \(J_e\) and mild \(κ_e\) dependence.
Radii. The raw beat‑distance radius \(r_\star\) shows a wide dynamic range because
electron–proton \(x\) can approach the U(1) boundary; trimming near‑resonant outliers gives a
mid‑band in the 104–105 fm range, compatible with a Bohr‑scale envelope
(0.5 Å = 5.29×104 fm) under the site’s RTG↔SI map. A representative plot is shown below;
the single large spike corresponds to a near‑resonant case (kept here for transparency but
excluded from trimmed summaries).

Radius policy \(r_\star\) vs case index. The tall spike is a near‑resonant outlier;
trimmed statistics (10–90%) yield O(104–105) fm.
Scale sanity check (relative). The proton’s internal radius metric from the
triad is ≈1.07 fm (SU(2) window), while the hydrogen envelope (trimmed \(r_{\mathrm{Bohr}}\))
is O(104–105) fm. The ratio is therefore O(104–105),
consistent with atomic vs hadronic scales without introducing extra anchors.
4) Reproducibility (CLI)
4.1 Export a proton triad with (ω, φ, spin)
# Re‑run proton finalization to emit proton_nodes.json alongside index.json
python rtg_proton.py `
--outdir proton_final `
--window SU2 --scheme litim --amp none `
--Jbind 2.0 2.2 2.4 `
--kappa_c 0.10 0.30 `
--lambda-win 2.0 `
--trials 512 --iters 6000 `
--workers 8 --seed 20250905 `
--save-traces --plots --hess
# Files of interest (all in proton_final/):
# - index.json
# - summary.csv
# - proton_nodes.json <— explicit [ω, φ, spin] for the best triad
4.2 Hydrogen (electron search around fixed triad)
python rtg_hydrogen.py `
--outdir hydrogen_final `
--scheme litim `
--pwindow SU2 `
--ewindow U1 `
--amp none `
--Je 0.8 1.0 1.2 `
--Ke 0.05 0.10 `
--lambda-win 2.0 `
--trials 256 `
--iters 4000 `
--save-traces --plots `
--proton-root proton_final
# Emits:
# hydrogen_final/index.json
# hydrogen_final/summary.csv
# hydrogen_final/proton_seed.json (the triad actually used)
4.3 Observables & summaries
# Quick summary + plots (energy ladder, radius policy)
python observe_hydrogen.py `
--root hydrogen_final `
--outcsv H_observables.csv `
--summary H_observables_summary.csv `
--figdir H_refine_figs `
--radius-policy trimmed
# - H_energy_ladder.png
# - H_radius_vs_case.png
# - hydrogen_nodes.json <— canonical [proton triad + electron] JSON
5) Data & artifacts
- Hydrogen summary:
H_observables_summary.csv - Per‑case table:
H_observables.csv - Nodes (for reuse):
hydrogen_nodes.json - Figures:
H_energy_ladder.png,H_radius_vs_case.png - Run index:
hydrogen_final/index.json,hydrogen_final/summary.csv
6) Notes, caveats, next steps
- No extra tuning. The proton is fixed; hydrogen scans only vary \((J_e, κ_e)\)
and random seeds for the electron. - Near‑resonant outliers. Raw \(r_\star\) can spike when \(x \to 0\). We therefore
report a trimmed radius \(r_{\mathrm{Bohr}}\) for scale comparisons. - Charge/form‑factor. The electron charge normalization and Sachs \(G_E(Q^2)\)
are slated for the next iteration (script hooks are in place).
Planned next steps.
- Form factor: implement and publish \(G_E(Q^2)\) for hydrogen, verify
\(G_E(0)=1\) and extract a small‑\(Q^2\) slope radius \(r_E\) with bootstrap errors. - Spin configurations: document which proton triad spins favor the deepest hydrogen
plates; sweep electron spin and record degeneracies. - Calibration pass: apply the two‑anchor RTG↔SI map (Ω, Λ) from the unified page to
quote hydrogen energies and radii with uncertainties. - Excited shells: repeat the electron search with different U(1) sub‑windows to
probe excited states (compare \(r_\star\) bands and energy gaps).
7) Change log
| Version | Date | Key updates |
|---|---|---|
| 0.1 | 2025‑09‑11 | First public draft. Explicit energy model for hydrogen (3 proton links), plateau diagnostics, energy ladder plot, radius policy with trimmed Bohr band, reproducibility CLI, and export of hydrogen_nodes.json. |
Contact: RTG Theory Group · rtgtheory.org