Mathematical Foundations of RTG

Version: 1.0 – April 2025
Authors:
Mustafa Aksu, ChatGPT, Grok
Last updated: April 14, 2025

1. Domain of Objects: The Frequency-Phase-Spin Space \( \mathbb{F}_R \)

  • An RTG object is a triple \( f = (\omega, \phi, s) \), where:
    • \( \omega \in \mathbb{R}^+ \): Frequency (Hz) — represents temporal identity
    • \( \phi \in [0, 2\pi) \): Phase (radians) — serves as a relational clock
    • \( s \in \{+\frac{1}{2}, -\frac{1}{2}\} \): Spin — denotes intrinsic resonance parity (clockwise/counterclockwise)

These are the atomic entities of the RTG math system.


2. Fundamental Operations

  1. Frequency Addition (⊕): Beat Operation \( f_1 \oplus f_2 := |\omega_1 – \omega_2| \)
    • Output: new beat frequency
    • Commutative: \( f_1 \oplus f_2 = f_2 \oplus f_1 \)
    • Not associative
  2. Frequency Scaling (⊗): Harmonic Multiplication \( n \otimes f := (n \cdot \omega, n \cdot \phi \mod 2\pi, s) \)
    • Models harmonic stacking (overtones)
    • \( n \in \mathbb{Z}^+ \)
    • Spin is preserved in scaling
  3. Inversion (⊖): Anti-whirl \( \ominus f := (-\omega, \phi + \pi \mod 2\pi, -s) \)
    • Represents reversed spin, frequency direction, and antiphase

3. Relational Distance Function

For two RTG objects: \( d(f_1, f_2) = \frac{2\pi}{|\omega_1 – \omega_2|} \)

  • Interpreted as beat period (temporal separation)
  • \( d(f_1, f_2) \to \infty \) as \( \omega_1 \to \omega_2 \)

4. Resonance Classes

Two nodes \( f_1, f_2 \) are in resonance if: \( \frac{\omega_1}{\omega_2} \in \mathbb{Q} \quad \text{and} \quad \Delta\phi = \phi_1 – \phi_2 = \frac{2\pi n}{m}, \; n, m \in \mathbb{Z} \quad \text{and} \quad s_1 = s_2 \)

  • Resonance strength: \( \mathcal{R}(f_1, f_2) = \frac{1}{T_{\text{beat}}} \cdot \cos(\Delta \phi) \cdot \delta_{s_1, s_2} \)

5. Phase Geometry and Trigonometry

Phase Functions: \( \sin_t(f, t) = \sin(\omega t + \phi), \quad \cos_t(f, t) = \cos(\omega t + \phi) \)

Phase Distance: \( d_{\phi}(\phi_1, \phi_2) = \min(|\phi_1 – \phi_2|, 2\pi – |\phi_1 – \phi_2|) \)

Phase Addition: \( \phi_1 \oplus \phi_2 = (\phi_1 + \phi_2) \mod 2\pi \)


6. Composite Structures and Stability Rules

Stability Conditions for a Set of RTG Nodes \( \{f_i\} \):

  1. All \( \omega_i / \omega_j \in \mathbb{Q} \)
  2. All \( \Delta \phi_{ij} = 2\pi n / m \)
  3. All \( s_i = s_j \) or known pattern (e.g., balance of \( \pm \frac{1}{2} \))
  4. Beat loops form closed cycles
  • Classes:
  • Duon: 2-node stable system
  • Trion: 3-node harmonic ring
  • Shell: Nested beat structure
  • Lattice: Grid of pairwise-resonant nodes

7. Temporal Derivatives (Preview)

\( \frac{d\phi}{dt} = \omega \quad ; \quad \frac{d\omega}{dt} \Rightarrow \text{temporal evolution or decay} \quad ; \quad \frac{ds}{dt} = 0 \text{ unless flipped by interaction} \)

These will later support RTG dynamics, fields, and interactions.


This formalism defines the core of RTG mathematics: frequency-first, relational, phase- and spin-driven. It replaces traditional position-based math with rhythm, resonance, and whirling node logic.

Scroll to Top