Thermodynamics & Rotational Dynamics in Relational Time Geometry (RTG)

Version 1.9 — 12 Aug 2025 (updated Δω* to 1.45×1023, fixed Hz conversions, clarified σexch independence, added Tspec, RTG-native orbital demo, cumulative heat-flow integration, expanded Appendix)

I · Thermodynamic primitives from node data

I-1 Internal energy U

U = Σi ħ ωi + ½ Σi≠j [ K′ |Δωij| / Δω* + J ℛij + Jex sin Δφij e−(Δωijexch ],

ij = ¾ [1+cos Δφij] (1+sisj) e−(Δωij/Δω*)², si = i σi, σi ∈ {±1}.

Notes: Σi ħ ωi is intrinsic; ½ pair-sum for undirected bonds; lowest-order binding term Eresij = ħ Δωij Aij Gij. σexch is an independent UV regulator for the exchange term (typically O(Δω*)) and must not be confused with Δω*; σnoise is the dimensionless CHSH noise parameter (distinct).

I-2 Work and force

With rij = 2π c / |Δωij| and ∂|Δω|/∂r = −(2π c)/r²:

∂Eij/∂Δωij = (K′/Δω*) sgn(Δωij) − (2J Δωij/Δω*²) ℛij − (2Jex Δωijexch²) sin Δφij e−(Δωijexch,

Fij = −∂Eij/∂rij = (2π c / rij²) [∂Eij/∂Δωij], W(γ) = ∫γ Σi<j Fij drij.

Numerics: take sgn(0) ≡ 0 to avoid jitter at Δωij → 0.

I-3 Temperature TRTG, Tspec

🔍 Temperature notions in RTG

  • Relational (signed) temperature, frame-dependent: TRTGobs) = ħ (⟨ω⟩ − ωobs) / kB. Indicates heat-flow direction relative to observer’s clock; can be negative (population inversion).
  • Spectral (scalar) temperature, frame-invariant: Tspec = ħ σω / kB ≥ 0, with σω the ensemble’s spectral width. Near equilibrium, canonical pi ∝ exp[−ħ ωi / (kB Tspec)], S = −kB Σ pi ln pi.

I-4 Heat transfer

🔍 Heat flow in RTG — vibrational energy transfer when mean frequencies differ. Resonance ℛ12 gates the transfer: closed gates (G12 = 0) ⇒ ℛ12 = 0.

q̇ = ħ (⟨ω⟩1 − ⟨ω⟩2) ℛ12, Q(t) = ∫₀ᵗ q̇(τ) dτ.

Anomaly check: ⟨∇μJμ⟩ ≲ 10⁻³ (EH Corrections v2.5 §8).


II · Rotational dynamics

II-1 Emergent mass

mi = [ ħ ωi − ½ Σj Ebindij ] / c², Ebindij = J ℛij.

The ½ avoids double-counting. Clamp mi ≥ 0 in coarse-graining. Matches tetrad-based inertia and elastic mass-defect in Residual Elasticity v1.6.

II-2 Orbital motion (RTG-native demo)

import numpy as np, matplotlib.pyplot as plt

# Constants (SI)
c = 2.99792458e8
hbar = 1.054e-34
delta_omega_star = 1.45e23       # s^-1
Kp_MeV = 12.0                    # MeV
eV = 1.602176634e-19
Kp = Kp_MeV * 1e6 * eV           # J

m0 = hbar*delta_omega_star/c**2  # ~1.7e-28 kg

r = np.logspace(-2, 0, 200)      # m
dEdw = Kp/delta_omega_star       # J·s
F = (2*np.pi*c/r**2) * dEdw      # N
v = np.sqrt(F*r/m0)

plt.loglog(r, v)
plt.xlabel('r (m)'); plt.ylabel('v (m/s)')
plt.title('RTG elastic-regime orbital speed (toy)')
plt.tight_layout(); plt.savefig('orbit_v_rtg.png')

III · Practical notes & examples

  • Earth–Sun analogue: |Δω| ≈ 4×10⁻⁷ Δω* ⇒ TRTG ≈ 300 K for a Planck-observer node (illustrative; actual depends on mass/scale choice).
  • Carnot 4-node loop: η ≈ 1 − Tcold/Thot (≤ 3 % error) when |Δφ| ≤ π/6, |Δω| ≤ 0.2 Δω*.
  • Heat-flow with Δω noise:
import numpy as np, matplotlib.pyplot as plt
hbar = 1.054e-34
delta_omega_star = 1.45e23

t = np.linspace(0, 1e-10, 1000)
omega1 = 1.45e23
omega2 = 1.44e23 + 0.01e23*np.random.randn(t.size)

R12 = 0.75*(1+np.cos(0.1)) * np.exp(-((omega1-omega2)/delta_omega_star)**2)

qdot = (omega1 - omega2) * hbar * R12
Q = np.cumtrapz(qdot, t, initial=0.0)

plt.plot(t, Q)
plt.xlabel('t (s)'); plt.ylabel('Q (J)')
plt.title('Heat transfer with Δω noise (cumulative)')
plt.tight_layout(); plt.savefig('heat_noise.png')

Cross-references: Forces & Fields v1.1 (force deriv.), Residual Elasticity v1.6 (mass–energy scaling), Gauge Symm. v1.4 (bandwidth thresholds), EH Corrections v2.5 (heat-kernel anomalies).


Appendix A — Symbol reference

SymbolDescription
ωiIntrinsic frequency of node i
φiPhase of node i
si=±i, σi=±1Binary spin (analytic/code)
Δω*Critical bandwidth (two-loop RG)
K′Linear spectral coefficient in bond energy
J, JexResonance and exchange strengths (energy units)
Aij¾[1+cos Δφij] e−(Δωij/Δω*)²
ΔφijPhase difference φi−φj
ijResonance strength Aij gated by spins
GijSpin-gate factor (1−σiσj)/2
rijBeat distance 2π c / |Δωij|
miEmergent mass of node i
TRTG, TspecRelational/spectral temperatures
σexchExchange UV regulator width (angular-frequency units)
σnoiseDimensionless CHSH noise amplitude
QHeat exchanged
ΔtCode time step

Change Log

Ver.Date (UTC)Main updates
1.92025-08-12Updated Δω* to 1.45×1023 s⁻¹; fixed Hz conversions; clarified σexch independence; added Tspec; RTG-native orbital demo; cumulative heat-flow integration; expanded Appendix.
1.82025-08-03Added heat/temperature explanation boxes; finished multi-body U & force derivatives; entropy rationale; Δω-noise heat sim; orbital demo; corpus links.
1.72025-08-03Completed U,W,F equations; anomaly-safe heat; symbol appendix.
1.62025-07-31RG-matched Δω*; initial corrections & dimensional notes.

Back to top

Scroll to Top