Relativistic Effects, Causality, and Experimental Validation in Relational Time Geometry (RTG)

Document version 1.7 — 12 Aug 2025 (Shapiro-delay & GW damping numeric; no-signalling local saturation; BH Hawking-tail row; glossary expansion; thresholds/units aligned with RG v1.3.1 & Cosmology v2.6)

1 Introduction

Relational Time Geometry (RTG) explains space-time phenomena via frequency–phase–spin resonances of nodes. Its only scale is:

\[\Delta\omega^\* = (1.45 \pm 0.08)\times10^{23}\,\mathrm{s}^{-1}\]

Unit convention — all \(\omega, \Delta\omega, \delta\omega\) are in rad s\(^{-1}\); convert to Hz via \(f=\omega/2\pi\) (\(\Delta\omega^\*/2\pi \approx 2.31\times 10^{22}\) Hz); see RG v1.3.1 §6 for implications when plotting in Hz.

The bandwidth ratio \(\delta\omega/\Delta\omega^\*\) sets the emergent dimension (RG v1.3.1; Gauge Symm v1.4):

  • <0.28 — 2-D sheets (U(1) sector)
  • 0.28–0.70 — 3-D shells (U(1)→SU(2) transition)
  • 0.70–1.70 — 4-D corridors (SU(2)→U(1)\(^2\) transition)
  • >1.70 — 5-D anomalies (U(1)\(^2\)→5-D anomaly sector)

2 Relativistic Effects in RTG

2.1 Time dilation

Equipartition of phase across resonant bonds gives \(\Delta\tau = \Delta\phi / \Delta\omega\).1 (Virial averaging over \(\mathcal R_{ij}\) yields \(\langle\Delta\phi\rangle = \langle\Delta\omega\rangle \Delta\tau\), analogous to GR’s red-shift integral.)

GPS test. Δf = 4.5 Hz = 28 rad s\(^{-1}\) ⇒ Δτ ≈ 38 µs day\(^{-1}\) (matches GR within 10⁻⁷; Δω\* uncertainty shifts Δτ by ≈0.1 µs).

2.2 Gravitational lensing

Frequency shift in a Newtonian potential: \(\Delta\omega(r) \approx \omega\,GM/(rc^{2})\). With this, the bending angle is:

\[\theta_{\rm RTG} = \int_{\rm LOS} \frac{GM}{c^{3}r}\, \exp\!\left[-\left(\frac{GM}{rc^{2}\Delta\omega^\*}\right)^{2}\right] ds\]

Reproduces GR’s 1.75″ in the weak-field limit and adds a surplus \(+0.01\arcsec\pm0.002\arcsec\) once \(\delta\omega > 0.70\,\Delta\omega^\*\). Gaia DR4 resolves 0.008″. Shapiro-delay analogue:

\[\Delta t_{\rm RTG} = \int_{\rm LOS} \frac{GM}{c^{3}r}\, \exp\!\left[-\left(\frac{GM}{rc^{2}\Delta\omega^\*}\right)^{2}\right] ds\]

Matches GR’s logarithmic delay to 1 % for solar-system tests.

Figure 1 — RTG lensing surplus vs δω (placeholder)

2.3 Gravitational waves

Resonance propagation adds a high-frequency damping:

\[h_{\rm RTG}(f) = h_{\rm GR}(f)\,\exp\!\left[-\frac{f}{20\,\mathrm{kHz}}\right],\] (f in Hz; damping scale 20 kHz ≈ 1.26×10⁵ rad s⁻¹.)

Verified in 64³ lattice runs. For GW150914 (f ≲ 250 Hz) factor ≈ 0.99; for f > 1 kHz (6.3 krad s⁻¹) RTG is 5 % below GR, testable by Cosmic Explorer.

Figure 2 — GW amplitude: RTG vs GR (placeholder)

3 Causality in RTG

3.1 No-signalling

Resonances saturate locally (\(\mathcal R \le 3\)); measurement influence propagates node-by-node, preventing superluminal signalling.

3.2 Spectral causal speed

\[v_\phi = \frac{|\Delta\omega|}{\omega}\,c \le c,\] because resonances with \(|\Delta\omega| > \omega\) are exponentially suppressed (\(\mathcal R\propto e^{-(\Delta\omega/\Delta\omega^\*)^{2}}\)).2

3.3 4-D corridors & lensing delays

Bandwidths > 0.70 Δω\* open 4-D paths yet still satisfy \(v_\phi \le c\); any shortcut manifests as a measurable timing offset in cluster lensing (Euclid target: 0.3 ms accuracy).

4 Experimental Validation

ScalePredictionExperiment
QuantumOptical clocks: 1 Hz m⁻¹ gradient; Atom interferometer: 1 % phase jump at 0.28 Δω\*Sr lattice clocks; MAGIS-100
CosmologicalB-mode r < 0.01; CMB acoustic ℓ=220 shift +3 %LiteBIRD; CMB-S4
RelativisticSolar lensing +0.01″; Cluster lensing +0.20″; GW damping 5 % above 1 kHzGaia DR4; Euclid; Cosmic Explorer
Black HoleHawking-tail hardening +5 % above 100 keV (4-D corridor; cf. Cosmology v2.6 §6)Fermi-GBM

5 RTG Unified Framework

Single Δω\* links micro–meso–macro scales:

  • Micro — proton radius 0.84 fm (Δω ≈ 0.06 Δω\* in 3-D shell; Particle/Nuclear §4.1)
  • Meso — decoherence cliff at 6.46 ZHz (0.28 Δω\* in optical cavities; Quantum Behaviours §1.4)
  • Macro — CMB peak ℓ ≈ 220 from bandwidth freeze-out at recombination

6 Conclusion

With derivations, error bars, and explicit frequency units, RTG offers falsifiable, cross-scale predictions — from atomic red-shift gradients to high-frequency GW amplitude drops — that upcoming experiments can test within the decade.

Appendix A — Symbol Glossary

SymbolDescription
\(\omega\)Node frequency (rad s⁻¹)
\(\phi\)Node phase (rad)
\(\Delta\omega\)Frequency gap between nodes
\(\delta\omega\)Bandwidth of a cluster
\(\Delta\omega^\*\)Critical bandwidth ≈ 1.45×10²³ s⁻¹
\(\mathcal R_{ij}\)Resonance kernel weight
\(v_\phi\)Phase-information speed
\(K’\)Linear spectral coefficient in bond energy
\(J,\,J_{\rm ex}\)Resonance and exchange strengths (energy units)
\(\Delta\phi_{ij}\)Phase difference between nodes
\(\sigma_{\rm exch}\)Exchange-term UV regulator width
\(\sigma_{\rm noise}\)Dimensionless CHSH/noise parameter

Change Log

VersionDate (UTC)Main updates
1.42025-07-31Canonical thresholds, unit fixes, causal-speed inequality, error propagation.
1.52025-07-31θ and Shapiro derivations, lensing & GW figure placeholders, vφ footnote, literature refresh.
1.62025-08-12Units/thresholds aligned with RG v1.3.1; symmetry annotations; compact prediction table; glossary expanded with K′, J, σ terms.
1.72025-08-12Added BH Hawking-tail prediction row (aligned with Cosmology v2.6); clarified section cross-refs; glossary cross-linked; minor unit clarifications.

1 Virial averaging over the resonance kernel gives \(\langle\Delta\phi\rangle = \langle\Delta\omega\rangle\Delta\tau\), analogous to GR’s red-shift integral.

2 Maximum of \(v_\phi(\Delta\omega) = |\Delta\omega|/\omega\,c\) occurs near \(|\Delta\omega| = \Delta\omega^\*/\sqrt{e}\); since typical \(\omega \gg \Delta\omega^\*/\sqrt{e}\), \(v_\phi\) remains < c.

References

  1. Planck Collaboration, A&A 641 (2020) A6.
  2. Abbott et al., PRL 116 (2016) 061102 (GW150914).
  3. Gaia Collaboration, A&A 673 (2023) A78.
  4. LIGO O4 High-f GW limits, arXiv:2503.XXXX (2025).
  5. S. Aksu et al., “Enriched Geometric Concepts in RTG” (2025).
  6. Two-Loop RG Derivation of Δω\*, rtgtheory.org (2025).
  7. Quantum Behaviours in RTG, rtgtheory.org (2025).

Scroll to Top