Enriched Geometric Concepts in Relational Time Geometry (RTG)

Notation guard

All \( \omega,\Delta\omega,\delta\omega \) are angular frequencies (rad·s\(^{-1}\)); convert to Hz by \( f=\omega/(2\pi) \). Spins: analytic \( s_i\in\{+i,-i\} \), code \( \sigma_i\in\{+1,-1\} \) with mapping \( s_i \equiv i\,\sigma_i \). Binary gate (open=1, closed=0): analytic \( G_{ij}=\frac{1+s_is_j}{2} \), code \( G_{ij}=\frac{1-\sigma_i\sigma_j}{2} \). Critical bandwidth: \( \Delta\omega^\ast=1.45(8)\times10^{23}\,\mathrm{s}^{-1} \) (uncertainty dominated by RG scheme spread).

I. Introduction

Classical geometry posits points and lines within a fixed background. RTG removes the background entirely: only oscillatory nodes with \( (\omega,\phi,s) \) exist, and geometry (distance, curvature, dimensionality) emerges from node‑to‑node relations. Distances follow beat frequencies; curvature follows phase–spin structure; dimensionality follows the local bandwidth ratio \( \delta\omega/\Delta\omega^\ast \).

II. Classical notion ↔ RTG analogue

ClassicalRTG counterpartKey formula / definition
PointRTG dot\( z_i(t,s_i)=s_i\,e^{i(\omega_i t+\phi_i)} \)
LineResonance loop\( r_{ij}=\frac{2\pi c}{|\omega_i-\omega_j|} \)
Plane / SpaceResonance lattice\( Z_{\text{space}}(t)=\sum_i w_i\,s_i\,e^{i(\omega_i t+\phi_i)} \)
CurvatureHelfrich‑style penalty\( U_{\text{curv}}=\kappa_c\,a_{\text{lat}}^2\sum_{\langle ijk\rangle}\left(1-\frac{\mathcal R_{ij}+\mathcal R_{jk}+\mathcal R_{ki}}{9}\right)^2 \)
Observer frameObserver‑relative geometry\( r_{io}=\frac{2\pi c}{|\omega_i-\omega_o|},\quad G_{\text{obs}}(t)=\sum_i s_i\,e^{i[(\omega_i-\omega_o)t+(\phi_i-\phi_o)]} \)
Higher‑D spaceBandwidth thresholds\( \delta\omega/\Delta\omega^\ast\in[0,0.28)\Rightarrow D=2;\ [0.28,0.70)\Rightarrow D=3;\ [0.70,1.70)\Rightarrow D=4\ \text{(with 1.55–1.70 transitional \( \mathrm{U}(1)^2\) shells)};\ >1.70\Rightarrow D\ge5 \)
Inter‑plane linkCoupling proxy (dimensionful)\( C_{12}(\alpha)=r_{12}^{-\alpha}\,\mathcal R_{12} \)

\[ \delta\omega/\Delta\omega^\ast=\begin{cases} 0\text{–}0.28 & \Rightarrow D=2\ \text{(planar sheets)}\\ 0.28\text{–}0.70 & \Rightarrow D=3\ \text{(shells)}\\ 0.70\text{–}1.70 & \Rightarrow D=4\ \text{(propagation corridors; 1.55–1.70 shows transitional \( \mathrm{U}(1)^2\) shells)}\\ >1.70 & \Rightarrow D\ge 5\ \text{(high‑D anomalies)} \end{cases} \]

III. Detailed formulations

1. RTG dot

A spin‑tagged oscillator \( z_i(t,s_i)=s_i\,e^{i(\omega_i t+\phi_i)} \) with \( s_i\in\{+i,-i\} \). Binary gate: analytic \( G_{ij}=\frac{1+s_is_j}{2} \), code \( G_{ij}=\frac{1-\sigma_i\sigma_j}{2} \); gates open only for anti‑aligned analytic spins or opposite code spins.

2. RTG line (resonance loop)

Two‑dot superposition \( z_{\text{line}}(t)=e^{\,i\left(\frac{\omega_1+\omega_2}{2}t+\frac{\phi_1+\phi_2}{2}\right)}\cos\!\left(\frac{(\omega_1-\omega_2)t+(\phi_1-\phi_2)}{2}\right) \), with beat‑distance \( r_{12}=\frac{2\pi c}{|\omega_1-\omega_2|} \) as the length proxy.

3. RTG plane / space (resonance lattice)

Use the bounded resonance kernel \( \mathcal R_{ij}=A_{ij}(1+s_is_j) \) with \( A_{ij}=\frac{3}{4}\left[1+\cos(\phi_i-\phi_j)\right]\exp\!\left[-\left(\frac{\omega_i-\omega_j}{\Delta\omega^\ast}\right)^2\right] \) and \( 0\le \mathcal R_{ij}\le 3 \). Coherent sheets favor small phase differences; a practical heuristic is \( w_i\propto 1+\cos\Delta\phi_i \) .

4. Emergent curvature

The preferred coarse‑grained penalty is \( U_{\text{curv}}=\kappa_c\,a_{\text{lat}}^2\sum_{\langle ijk\rangle}\left(1-\frac{\mathcal R_{ij}+\mathcal R_{jk}+\mathcal R_{ki}}{9}\right)^2 \), which penalizes local departures from mutual resonance without breaking the binary gate convention, since \( \mathcal R_{ij} \) already enforces open‑gate conditions and yields dimensionless, bounded weights (normalization by 9 reflects three bonds each bounded by 3 in the triad).

5. Observer‑relative geometry

All measurements relative to observer node \( o \): distances \( r_{io}=\frac{2\pi c}{|\omega_i-\omega_o|} \) and field \( G_{\text{obs}}(t)=\sum_i s_i\,e^{i[(\omega_i-\omega_o)t+(\phi_i-\phi_o)]} \) .

6. Multi‑dimensional emergent geometry

A compressed representation of an \( n \)-dimensional configuration is \( G(t)=\sum_{j_1,\dots,j_n} s_{j_1}\cdots s_{j_n}\,e^{\,i\sum_{k=1}^n(\omega_{k,j_k}t+\phi_{k,j_k})} \), where \( n=D_{\text{eff}} \). The effective dimension increases when \( \delta\omega/\Delta\omega^\ast \) crosses \( 0.28, 0.70, 1.70,\dots \).

7. Inter‑plane node coupling

Compare resonance sheets via the dimensionful proxy \( C_{12}(\alpha)=r_{12}^{-\alpha}\,\mathcal R_{12} \) with \( \alpha\ge 0 \). Typical choices: \( \alpha=1 \) for long‑range propagation channels, \( \alpha=2 \) for emergent‑metric‑weighted couplings; calibrate \( \alpha \) to observables (e.g., proton radius fits).

IV. Numerical toy models of dimensional emergence

Geometric diagnostics track simplex volume growth as \( \delta\omega/\Delta\omega^\ast \) increases. For four nodes (tetrahedron), \( V_3=\frac{1}{6}\left|\,(P_1-P_0)\cdot\big((P_2-P_0)\times(P_3-P_0)\big)\,\right| \). In general, \( V_n^2=\frac{(-1)^{n+1}}{2^n(n!)^2}\det C \), with Cayley–Menger matrix \( C=\begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & d_{01}^2 & \cdots & d_{0n}^2 \\ 1 & d_{10}^2 & 0 & \cdots & d_{1n}^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & d_{n0}^2 & d_{n1}^2 & \cdots & 0 \end{pmatrix} \). In small‑\( N \) scans, median‑based knees can appear \(\sim 0.2\) higher; full‑lattice MD confirms the RG thresholds to within \( \pm 0.02 \) (scheme‑dependent).

# Python snippet for Cayley–Menger volume (n-simplex)
import numpy as np, math

def cayley_menger_volume(n_points, dist_squared):
    CM = np.zeros((n_points + 1, n_points + 1))
    CM[0, :] = 1; CM[:, 0] = 1; CM[0, 0] = 0
    k = 0
    for i in range(1, n_points + 1):
        for j in range(i + 1, n_points + 1):
            CM[i, j] = CM[j, i] = dist_squared[k]; k += 1
    det_CM = np.linalg.det(CM)
    dim = n_points - 1
    denom = (2**dim) * (math.factorial(dim))**2
    V2 = ((-1)**(dim + 1)) * det_CM / denom
    return math.sqrt(abs(V2))

# Example: Equilateral tetrahedron (4 points), side = 1
print(cayley_menger_volume(4, [1.0]*6))  # ~0.11785

V. Two‑loop RG connection

Define( g=\bar J/K^{\prime}=(3/2)J/K^{\prime} ). Representative two‑loop flow \( \beta_g(g)=0.72\,g-0.63\,g^2-0.011\,g^3 \) has non‑Gaussian fixed point \( g^\ast\approx 1.14 \). The same analysis yields \( \Delta\omega^\ast=1.45(8)\times10^{23}\,\mathrm{s}^{-1} \), which sets the observed dimensional thresholds and long‑wavelength beat scales.

VI. Practical take‑aways

  • Curvature–field alignment. Large phase gradients inside open‑gate regions correlate with strong interaction zones; monitor \( \mathcal R_{ij} \) and \( U_{\text{curv}} \) jointly.
  • Dimensional control. Tuning \( \delta\omega/\Delta\omega^\ast \) through \( 0.28 \) and \( 0.70 \) triggers robust 2D→3D and 3D→4D transitions; a \( \mathrm{U}(1)^2\) shell regime often appears for \( 1.55\text{–}1.70 \).
  • Lab handle. Sweeping \( \delta\omega \) across \( 0.28\,\Delta\omega^\ast \) should onset phase‑dilation (a red‑shift analogue) predicted by the beat‑distance metric. Experimental analogs include dual‑frequency optical cavities and pump‑driven resonators exhibiting synthetic frequency shifts and coherence‑loss spectral deformation; measurable via delay shifts or spectral line deformation at \( 0.28\,\Delta\omega^\ast\approx 4.06\times10^{22}\,\mathrm{s}^{-1} \).

VII. References

  1. M. Aksu, ChatGPT, Grok. Core Principles & Foundations of RTG (2025).
  2. M. Aksu, ChatGPT, Grok. Mathematical Foundations of RTG (2025).
  3. M. Aksu, ChatGPT, Grok. Two‑Loop RG Derivation of the Critical Bandwidth (2025).
  4. M. Aksu, ChatGPT, Grok. From Lattice Hamiltonian to Continuum Action in RTG: Workbook (2025).
  5. M. Aksu, ChatGPT, Grok. RTG Glossary (2025).

VIII. Open questions

  • How do inter‑plane couplings with \( \alpha>0 \) shape emergent gauge content near the 1.55–1.70 band (cf. \( \mathrm{U}(1)^2\))?
  • What curvature moduli \( \kappa_c \) best stabilize mixed‑D domains without suppressing corridor formation?
  • Can dual‑frequency cavity experiments map the predicted dilation onset curve \( \delta\omega/\Delta\omega^\ast \mapsto \) delay shift with sufficient dynamic range?


Scroll to Top