Revision date: 11 Sep 2025 · Version: 1.4 · Authors: Mustafa Aksu, Grok, ChatGPT
Aligned with RTG↔SI Calibration & Planck Observer (Unified v3.1) and RTG–EFT v1.4.2. Uses \( \Delta\omega^* = (1.45 \pm 0.08)\times 10^{23}\,\mathrm{s}^{-1} \); \(c,\hbar\) explicit. Key metrology values below are taken from the simulator’s run configuration and summary files you provided. :contentReference[oaicite:0]{index=0} :contentReference[oaicite:1]{index=1}
Contents
- 1 · Motivation: Singularities, Information, and RTG
- 2 · Mechanism: Thresholds and the Two‑Channel Trigger
- 3 · Derivations at a Glance
- 4 · Simulation and Benchmark Status (2025‑09‑11)
- 5 · Observational Signatures (testable)
- 6 · Comparison to Alternatives
- 7 · Limitations and Open Items
- 8 · Metrology Block (BH)
- 9 · Reproducibility (PowerShell quick start)
- 10 · Changelog
1 · Motivation: Singularities, Information, and RTG
In GR, black holes feature horizons and central singularities; quantumly, Hawking evaporation raises information‑loss concerns. RTG addresses both via bandwidth‑capped gradients: when the dimensionless spectral strain \(x \equiv \delta\omega/\Delta\omega^*\) exceeds a threshold, additional effective axes (“4‑D corridor”) open and absorb divergences while preserving relational phase information.
2 · Mechanism: Thresholds and the Two‑Channel Trigger
Windows (empirical/EFT): U(1) 0–0.28; SU(2) 0.28–0.70; 4‑D corridor 0.70–1.55; U(1)\(^2\) 1.55–1.70 (small spreads). The 4‑D corridor opens when \(x \ge 0.70\).
Quantitative anchors (with uncertainties):
- Threshold energy: \(E_{\mathrm{th}}=\hbar(0.70\,\Delta\omega^*)=(66.81\pm3.69)\,\mathrm{MeV}\).
- Threshold beat‑distance: \(r_{\mathrm{th}}=\dfrac{2\pi c}{0.70\,\Delta\omega^*}=(1.856\pm0.102)\times 10^{-14}\,\mathrm{m}\) (= \(18.56\pm1.02\) fm).
Two‑channel trigger for \(x(r)\):
x \equiv \delta\omega/\Delta\omega^* \;\approx\; (\omega_{\rm eff}/\Delta\omega^*) \,\big[\, C_J\,\mathfrak{F}(\rho,J,J_{\rm ex}) \;+\; C_K\,\sqrt{K(r)}\,\ell_{\rm corr}^2 \,\big].
- Compression/self‑interaction (dominant): rising local density \(\rho\) increases effective excitation via \(J,J_{\rm ex}\). When \(E_{\rm eff}\gtrsim E_{\rm th}\approx 67\,\mathrm{MeV}\), \(x\ge 0.70\) and a 4‑D corridor opens.
- Curvature/tidal (subdominant at micro \(\ell_{\rm corr}\)): \(\sqrt{K(r)}\) from Schwarzschild \(K=48G^2M^2/(c^4 r^6)\). For \(\ell_{\rm corr}\) in fm–mm, this term alone is far below 0.70; treat it as a cross‑check, not a driver.
2.1 · Quantitative curvature check (10 M☉)
For \(M=10\,M_\odot\): \(R_S\simeq 2.953\times10^4\,\mathrm{m}\); take \(\omega_{\rm eff}\simeq 1.0\times10^{23}\,\mathrm{s}^{-1}\) so \((\omega_{\rm eff}/\Delta\omega^*)\approx 0.69\). With \(\ell_{\rm corr}=r_{\rm th}=1.856\times10^{-14}\,\mathrm{m}\):
Radius | \(\sqrt{K(r)}\) [m\(^{-2}\)] | \(x_K=\sqrt{K}\,\ell_{\rm corr}^2\,(\omega_{\rm eff}/\Delta\omega^*)\) | \(\ell_{\rm corr}\) for \(x=0.70\) |
---|---|---|---|
\(r=R_S\) | \(3.97\times10^{-9}\) | \(9.44\times10^{-37}\) | \(\approx 1.60\times10^4\,\mathrm{m}\) |
\(r=5R_S\) | \(3.18\times10^{-11}\) | \(7.55\times10^{-39}\) | \(\approx 1.79\times10^5\,\mathrm{m}\) |
Conclusion: curvature/tidal contributions are negligible at microscopic \(\ell_{\rm corr}\); the compression channel must dominate near/inside a few \(R_S\).
3 · Derivations at a Glance
Threshold energy: \(E_{\rm th}/{\rm MeV} = (\hbar/{\rm eV})\times(0.70\,\Delta\omega^*)/10^6 \approx 66.81\pm3.69.\)
Threshold distance: \(r_{\rm th}=2\pi c/(0.70\,\Delta\omega^*)=18.56\pm1.02\,\mathrm{fm}.\)
Observer‑independence: corridor activation is a function of dimensionless \(x\) and is insensitive to global phase offsets (consistent with CHSH‑style QA invariants).
3.1 · Hawking‑analog (recast)
In RTG, near‑horizon phase‑noise \(\delta\phi\sim\exp[-(\delta\omega/\Delta\omega^*)^2]\) produces emission. We model an effective temperature scaling as
\(T_{\rm eff}=T_H \times f_{\rm corr}(x)\),
where \(T_H=\hbar c^3/(8\pi G M k_B)\) is the usual Hawking scale and \(f_{\rm corr}(x)\) is a corridor factor such as the mean gate‑openness \(\langle G_{\rm open}\rangle\) or spectral anisotropy \(A(x)\). This makes RTG consistent with Hawking scaling while avoiding over‑claiming equality of spectra before a full EFT calibration. For \(M\sim10\,M_\odot\), \(T_{\rm eff}\) remains \(\ll 1\) K, as expected.
4 · Simulation and Benchmark Status (2025‑09‑11)
Simulator (v0.7) highlights: Isomap geodesics built from the resonance kernel \(R_{ij}\); CM‑volumes computed from Euclidean embedded distances; spectral anisotropy via MDS top‑eigenvalue fractions; CHSH analytic check; density models (constant or power‑law); radial curvature sweep; reproducible outputs (CSV, JSON Metrology, optional PNGs).
Key aggregated findings from your runs:
- Knee of the corridor indicator: using the volume diagnostic \(({\rm CM4}-{\rm CM3})\) and refined scans, the pooled knee lies at \(x_{\rm knee}\approx 0.69\) (within the \(\pm 0.05\) window around 0.70). A fine scan reported \(x_{\rm knee}=0.69045\) and a bootstrap set centered near \(0.67\); both satisfy the threshold tolerance once sampling variability is considered.
- Channel dominance: the overall and near‑knee median ratio is \(x_{\rm curv}/x_{\rm comp}\approx 5.07\times10^{-38}\); curvature is negligible at microscopic \(\ell_{\rm corr}\) in all tested scenarios.
- CHSH validation: \(S(\sigma)=2\sqrt{2}\,e^{-c\sigma^2}\) is matched by the simulator for \(\sigma\in\{0,\;0.23,\;0.30,\;0.50\}\) within numerical precision across runs.
These outcomes are consistent with the Metrology Block recorded by the simulator (e.g., \(x_{\rm th}=0.70\), \(E_{\rm th}\approx 66.81\,\mathrm{MeV}\), \(r_{\rm th}\approx 1.856\times10^{-14}\,\mathrm{m}\), \(R_S\approx 2.953\times10^4\,\mathrm{m}\) for \(10\,M_\odot\)). :contentReference[oaicite:2]{index=2} The summary confirms reproducible artifacts (CSV and plots) for each run. :contentReference[oaicite:3]{index=3}
5 · Observational Signatures (testable)
- Ringdown (10–2000 Hz; LIGO/Virgo/KAGRA; future ET/CE): frequency and damping shifts tied to corridor onset. Practical proxy: report \(|\Delta f|/f\) vs \(x\) and \(\Delta Q/Q\) vs \(x\), with corridor fraction or anisotropy as the control variable.
- SMBH mergers (mHz; LISA): phase‑dependent attenuation via \(x(\rho)\); search for deviations from GR templates during inspiral‑to‑ringdown transition.
- Imaging (EHT‑class): percent‑level shifts in photon‑ring substructure are possible if near‑horizon refractive indices are modified by corridor activation.
- Information retention: cross‑correlate phases across simulated “evaporation” sequences (CHSH‑like invariants) to test non‑lossy behavior.
6 · Comparison to Alternatives
- LQG “bounce”: RTG employs bandwidth thresholds and relational corridors rather than discrete spin networks.
- Strings: no branes required; oscillator‑like nodes plus a resonance kernel suffice; “extra dimensions” are effective and threshold‑activated.
7 · Limitations and Open Items
- Derive \(\mathfrak{F}(\rho,J,J_{\rm ex})\) explicitly from EFT and publish \(C_J\) with errors (connect to \(K’\), \(J\), \(J_{\rm ex}\) post‑calibration).
- Quantify artifact sensitivity in the spectrum/volume diagnostics (kNN choice, R‑cut, sample counts) and propagate \(\Delta\omega^*\) uncertainty into \(E_{\rm th}, r_{\rm th}, x_{\rm total}\).
- Refine the Hawking‑analog section as \(T_{\rm eff}=T_H\,f_{\rm corr}(x)\) with \(f_{\rm corr}\) inferred from simulations (e.g., \(\langle G_{\rm open}\rangle\) or \(A(x)\)); avoid claiming exact spectral equality pending EFT fits.
8 · Metrology Block (BH)
{
"unified_page_version": "RTG↔SI v3.1 (2025-09-05)",
"rtg_eft_version": "v1.4.2",
"delta_omega_star": {"value": 1.45e23, "err": 0.08e23, "units": "s^-1"},
"thresholds": {
"x_th": 0.70,
"E_th_MeV": {"value": 66.81, "err": 3.69},
"r_th_m": {"value": 1.856e-14, "err": 1.02e-15}
},
"channels": {
"compression": {"C_J": 1.0, "alpha": 0.5,
"map": "x_J = (ω_eff/Δω*) * C_J * (ρ/ρ_ref)^alpha"},
"curvature": {"C_K": 1.0,
"form": "x_K = C_K * sqrt(K) * l_corr^2 * (ω_eff/Δω*)"}
},
"bh_case": {"mass_Msun": 10, "R_S_m": 2.953e4, "r_multipliers": [1, 3, 5]},
"sim": {
"seed": 42, "nodes": 50, "omega0_s^-1": 1.0e23,
"x_range": [0.5, 1.2, 8], "samples_CM": 64
},
"observables": ["CM_3vol", "CM_4vol", "gate_open_fraction",
"energy_exchange", "CHSH(σ_noise)"]
}
Values above reflect the configuration found in your uploaded bh_config.json
and summary. :contentReference[oaicite:4]{index=4} :contentReference[oaicite:5]{index=5}
9 · Reproducibility (PowerShell quick start)
Simulation (constant density; Isomap volumes; no plots):
python rtg_bh_sim.py `
--outdir out_bh_knee_refined `
--seed 42 `
--N 96 --omega0 1.0e23 `
--x-range 0.60 0.85 26 `
--r-mults 1 3 5 `
--Msun 10 `
--C_J 1.0 --alpha-comp 0.5 `
--rho-profile constant --rho0 2.8e17 --rho-ref 2.8e17 `
--volumes-mode isomap --knn 10 --Rmin-frac 0.20 `
--samples-vol 256 --no-plots
Benchmark (aggregate; knee by volumes):
python rtg_bh_benchmark.py `
--runs ".\out_bh_knee_refined,.\out_bh_const*,.\out_bh_power_n3*" `
--outdir .\bh_benchmark_out_refined `
--plots `
--expect-knee 0.70 `
--knee-tol 0.05 `
--knee-mode volumes
10 · Changelog
Version | Date | Key updates |
---|---|---|
1.4 | 2025‑09‑11 | Validated corridor knee via volumes diagnostic at \(x_{\rm knee}\approx 0.69\) (refined and bootstrap runs); switched to R‑based Isomap and Euclidean CM‑volumes; clarified Hawking‑analog as \(T_{\rm eff}=T_H\,f_{\rm corr}(x)\); added explicit artifact mitigations and uncertainty guidance; integrated simulator/benchmark outputs with metrology references. :contentReference[oaicite:6]{index=6} :contentReference[oaicite:7]{index=7} |
1.3 | 2025‑09‑09 | First Hawking‑analog write‑up; empirical pointers (ringdown, analog systems); consolidated observables. |
1.2‑draft | 2025‑09‑05 | Curvature sanity‑check table; emphasized compression channel; retained \(E_{\rm th}\), \(r_{\rm th}\) with uncertainties. |
1.1‑draft | 2025‑09‑05 | Two‑channel trigger introduced; BH Metrology Block; clarified toy status of Gaussian volume fit. |
::contentReference[oaicite:8]{index=8}