Last updated: 08 Jan 2026 | Authors: Mustafa Aksu, AI Collaborators
Preamble: Analytic spins use \(s_i=\pm i\); code spins use \(\sigma_i=\pm1\) with \(s_i\equiv i\,\sigma_i\). Unless noted, formulas are given in the analytic convention. All \(\omega,\Delta\omega,\delta\omega\) are angular frequencies (rad·s\(^{-1}\)); convert to Hz by \(f=\omega/(2\pi)\).
Contents
1. Fundamental Building Blocks
Node — The unique primitive of RTG, storing frequency \( \omega_i \), phase \( \phi_i \), and binary spin \( s_i=\pm i \). Geometry and dynamics emerge from inter-node relations.
Frequency \( \omega_i \) — Intrinsic tick-rate; local energy \( E_i=\hbar\,\omega_i \).
Phase \( \phi_i \) — Controls constructive/destructive interference with neighbours.
Spin \( s_i=\pm i \) — Analytic: \(s_i s_j\in\{-1,+1\}\); gate value \(1+s_is_j\) is 2 (open) for anti-aligned \((+i,-i)\) and 0 (closed) for aligned. Code: \(\sigma_i=\pm1\) with \(s_i\equiv i\,\sigma_i\); implement gate as \(1-\sigma_i\sigma_j\), which opens for opposite \(\sigma\).
Intrinsic time \( t_i \) — Using unwrapped phase \( \tilde\phi_i \): \( t_i=\tilde\phi_i/\omega_i \); meaningful only under local phase-locking.
Spin Gate Truth Table
| Convention | Pair | Product | Gate Value |
|---|---|---|---|
| ±i (analytic) | (+i, −i) | +1 | \(1+s_is_j=2\) (open) |
| ±i (analytic) | (+i, +i) or (−i, −i) | −1 | \(1+s_is_j=0\) (closed) |
| ±1 (code) | (+1, −1) or (−1, +1) | −1 | \(1-\sigma_i\sigma_j=2\) (open) |
| ±1 (code) | (+1, +1) or (−1, −1) | +1 | \(1-\sigma_i\sigma_j=0\) (closed) |
2. Resonance & Interaction Metrics
Resonance kernel \( \mathcal{R}_{ij} \) — \( \mathcal{R}_{ij}=A_{ij}\,(1+s_i s_j) \) with \( A_{ij}=\tfrac{3}{4}[1+\cos(\phi_i-\phi_j)]\,\exp[-(\omega_i-\omega_j)^2/(\Delta\omega^\ast)^2] \). Range \(0\le\mathcal R_{ij}\le3\).
Beat-frequency distance \( r_{ij} \) — \( r_{ij}=\dfrac{2\pi c}{|\omega_i-\omega_j|} \); the fundamental emergent metric derived from frequency frustration.
Bond energy \( E_{ij} \) — \( E_{ij}=K’\,\dfrac{|\omega_i-\omega_j|}{\Delta\omega^\ast}+J\,\mathcal{R}_{ij}+J_{\mathrm{ex}}\sin(\phi_i-\phi_j)\,\exp[-(\omega_i-\omega_j)^2/\sigma_{\mathrm{exch}}^{2}] \).
3. Observer Concepts
Observer node — Node whose \( (\omega,\phi,s) \) frame defines all measurements.
Observer dependence — Relational distances to observer \(o\): \( r_{io}=2\pi c/|\omega_i-\omega_o| \).
4. Emergent Dimensionality & Critical Bandwidth
Critical bandwidth — \( \Delta\omega^\ast=(1.45\pm0.08)\times10^{23}\,\mathrm{s}^{-1} \).
| \(\delta\omega/\Delta\omega^\ast\) | Effective D | Typical structure |
|---|---|---|
| 0–0.28 | 2 | Planar sheets |
| 0.28–0.70 | 3 | Stable shells (proton)* |
| 0.70–1.55 | 4 | 4‑D corridors (propagation channels) |
| 1.55–1.70 | Transitional | U(1)² phase shells (\(\varepsilon\approx\mathrm{SU(3)}\)) |
| >1.70 | 5+ | High‑D / Dim‑6 anomalies |
*Diagnostic: 2D→3D stability is defined by the Cayley–Menger volume \(V_4\) rising beyond the 0.28 threshold.
5. Stability & Guiding Principles
Stationarity — \( \partial E/\partial q=0 \). To conserve energy during discrete spin flips, energy \( \Delta E \) is routed into conjugate phase momentum \( \pi_\phi \).
Relational closure — No background spacetime; all definitions use node‑to‑node data.
6. Special Node Types & Dynamic Factors
Photon object — Spin–anti‑spin pair \((+i,-i)\) with shared phase, carrier \( \omega_\gamma\neq0 \), and internal \( \Delta\omega=0 \); effectively massless.
Whirling frequency \( \Omega \) — Local precession scale \( \Omega^2=|\nabla\phi|^2 \) (code units); used in vorticity analysis.
7. Emergent Simplicial Manifold (ESM) [NEW]
Machian Vacuum — Spacetime is not a pre-existing container but a screening field. Vacuum (\(Q \approx 0\)) condenses around topological defects (matter, \(Q \neq 0\)) to neutralize their curvature charge.
Boundary Charge (\(Q_\partial\)) — The topological flux of a cluster computed via a discrete Stokes theorem analog: \( Q = \sum_{e \in \partial} z_e \). Minimizing this drives vacuum growth.
Quantum Foam — A manifold state characterized by macroscopic neutrality (\(Q_\partial \approx 0\)) but microscopic roughness (\(C_{RMS} > 0\)). Hodge decomposition reveals that ~75% of this roughness is topologically irreducible.
Breathing Growth — An algorithm that allows controlled temporary increases in \(|Q|\) (“inhaling”) to bridge geometric gaps, enabling the growth of stable vacuum structures.
8. Quick-Reference Constants
| Constant | Symbol | Value |
|---|---|---|
| Speed of light | \(c\) | \(2.998\times10^8\,\mathrm{m/s}\) |
| Planck constant | \(\hbar\) | \(1.055\times10^{-34}\,\mathrm{J\cdot s}\) |
| Critical bandwidth | \(\Delta\omega^\ast\) | \(1.45(8)\times10^{23}\,\mathrm{s}^{-1}\) |
| Beat length | \(r^\ast\) | \(13.0\pm0.7\,\mathrm{fm}\) |
| Spectral length | \(\ell^\ast\) | \(2.07\pm0.11\,\mathrm{fm}\) |
9. Additional Terms
Heat — Energy flux between subsystems: \( \dot Q=\hbar\,[\langle\omega_1\rangle-\langle\omega_2\rangle]\,\mathcal R_{12} \).
Mass — \( m_i=\big[\hbar\omega_i-\frac{1}{2}\sum_j J\mathcal{R}_{ij}\big]/c^2 \); emergent inertia ties to resonance network connectivity.
Time dilation — \( \Delta\tau\approx\Delta\phi/\Delta\omega \); GR‑like red‑shift emerges via the metric construction.
Emergent gauge symmetry — U(1) (0–0.28), SU(2) (0.28–0.70), and U(1)\(^2\) (≈ SU(3)) near 1.55–1.70.
See also: Core Principles | Emergent Spacetime (ESM) | Thermodynamics | Gauge Symmetries