Core Principles & Foundations of Relational Time Geometry (RTG)

Last updated: 08 Jan 2026 | Authors: Mustafa Aksu, AI Collaborators

Preamble: Analytic spins use \(s_i=\pm i\); code spins use \(\sigma_i=\pm1\) with \(s_i\equiv i\,\sigma_i\). Unless noted, formulas are given in the analytic convention. All \(\omega,\Delta\omega,\delta\omega\) are angular frequencies (rad·s\(^{-1}\)); convert to Hz by \(f=\omega/(2\pi)\).

1. Fundamental Building Blocks

Node — The unique primitive of RTG, storing frequency \( \omega_i \), phase \( \phi_i \), and binary spin \( s_i=\pm i \). Geometry and dynamics emerge from inter-node relations.

Frequency \( \omega_i \) — Intrinsic tick-rate; local energy \( E_i=\hbar\,\omega_i \).

Phase \( \phi_i \) — Controls constructive/destructive interference with neighbours.

Spin \( s_i=\pm i \) — Analytic: \(s_i s_j\in\{-1,+1\}\); gate value \(1+s_is_j\) is 2 (open) for anti-aligned \((+i,-i)\) and 0 (closed) for aligned. Code: \(\sigma_i=\pm1\) with \(s_i\equiv i\,\sigma_i\); implement gate as \(1-\sigma_i\sigma_j\), which opens for opposite \(\sigma\).

Intrinsic time \( t_i \) — Using unwrapped phase \( \tilde\phi_i \): \( t_i=\tilde\phi_i/\omega_i \); meaningful only under local phase-locking.

Spin Gate Truth Table

ConventionPairProductGate Value
±i (analytic)(+i, −i)+1\(1+s_is_j=2\) (open)
±i (analytic)(+i, +i) or (−i, −i)−1\(1+s_is_j=0\) (closed)
±1 (code)(+1, −1) or (−1, +1)−1\(1-\sigma_i\sigma_j=2\) (open)
±1 (code)(+1, +1) or (−1, −1)+1\(1-\sigma_i\sigma_j=0\) (closed)

2. Resonance & Interaction Metrics

Resonance kernel \( \mathcal{R}_{ij} \) — \( \mathcal{R}_{ij}=A_{ij}\,(1+s_i s_j) \) with \( A_{ij}=\tfrac{3}{4}[1+\cos(\phi_i-\phi_j)]\,\exp[-(\omega_i-\omega_j)^2/(\Delta\omega^\ast)^2] \). Range \(0\le\mathcal R_{ij}\le3\).

Beat-frequency distance \( r_{ij} \) — \( r_{ij}=\dfrac{2\pi c}{|\omega_i-\omega_j|} \); the fundamental emergent metric derived from frequency frustration.

Bond energy \( E_{ij} \) — \( E_{ij}=K’\,\dfrac{|\omega_i-\omega_j|}{\Delta\omega^\ast}+J\,\mathcal{R}_{ij}+J_{\mathrm{ex}}\sin(\phi_i-\phi_j)\,\exp[-(\omega_i-\omega_j)^2/\sigma_{\mathrm{exch}}^{2}] \).

3. Observer Concepts

Observer node — Node whose \( (\omega,\phi,s) \) frame defines all measurements.

Observer dependence — Relational distances to observer \(o\): \( r_{io}=2\pi c/|\omega_i-\omega_o| \).

4. Emergent Dimensionality & Critical Bandwidth

Critical bandwidth — \( \Delta\omega^\ast=(1.45\pm0.08)\times10^{23}\,\mathrm{s}^{-1} \).

\(\delta\omega/\Delta\omega^\ast\)Effective DTypical structure
0–0.282Planar sheets
0.28–0.703Stable shells (proton)*
0.70–1.5544‑D corridors (propagation channels)
1.55–1.70TransitionalU(1)² phase shells (\(\varepsilon\approx\mathrm{SU(3)}\))
>1.705+High‑D / Dim‑6 anomalies

*Diagnostic: 2D→3D stability is defined by the Cayley–Menger volume \(V_4\) rising beyond the 0.28 threshold.

5. Stability & Guiding Principles

Stationarity — \( \partial E/\partial q=0 \). To conserve energy during discrete spin flips, energy \( \Delta E \) is routed into conjugate phase momentum \( \pi_\phi \).

Relational closure — No background spacetime; all definitions use node‑to‑node data.

6. Special Node Types & Dynamic Factors

Photon object — Spin–anti‑spin pair \((+i,-i)\) with shared phase, carrier \( \omega_\gamma\neq0 \), and internal \( \Delta\omega=0 \); effectively massless.

Whirling frequency \( \Omega \) — Local precession scale \( \Omega^2=|\nabla\phi|^2 \) (code units); used in vorticity analysis.

7. Emergent Simplicial Manifold (ESM) [NEW]

Machian Vacuum — Spacetime is not a pre-existing container but a screening field. Vacuum (\(Q \approx 0\)) condenses around topological defects (matter, \(Q \neq 0\)) to neutralize their curvature charge.

Boundary Charge (\(Q_\partial\)) — The topological flux of a cluster computed via a discrete Stokes theorem analog: \( Q = \sum_{e \in \partial} z_e \). Minimizing this drives vacuum growth.

Quantum Foam — A manifold state characterized by macroscopic neutrality (\(Q_\partial \approx 0\)) but microscopic roughness (\(C_{RMS} > 0\)). Hodge decomposition reveals that ~75% of this roughness is topologically irreducible.

Breathing Growth — An algorithm that allows controlled temporary increases in \(|Q|\) (“inhaling”) to bridge geometric gaps, enabling the growth of stable vacuum structures.

8. Quick-Reference Constants

ConstantSymbolValue
Speed of light\(c\)\(2.998\times10^8\,\mathrm{m/s}\)
Planck constant\(\hbar\)\(1.055\times10^{-34}\,\mathrm{J\cdot s}\)
Critical bandwidth\(\Delta\omega^\ast\)\(1.45(8)\times10^{23}\,\mathrm{s}^{-1}\)
Beat length\(r^\ast\)\(13.0\pm0.7\,\mathrm{fm}\)
Spectral length\(\ell^\ast\)\(2.07\pm0.11\,\mathrm{fm}\)

9. Additional Terms

Heat — Energy flux between subsystems: \( \dot Q=\hbar\,[\langle\omega_1\rangle-\langle\omega_2\rangle]\,\mathcal R_{12} \).

Mass — \( m_i=\big[\hbar\omega_i-\frac{1}{2}\sum_j J\mathcal{R}_{ij}\big]/c^2 \); emergent inertia ties to resonance network connectivity.

Time dilation — \( \Delta\tau\approx\Delta\phi/\Delta\omega \); GR‑like red‑shift emerges via the metric construction.

Emergent gauge symmetry — U(1) (0–0.28), SU(2) (0.28–0.70), and U(1)\(^2\) (≈ SU(3)) near 1.55–1.70.


See also: Core Principles | Emergent Spacetime (ESM) | Thermodynamics | Gauge Symmetries

Scroll to Top