Revision: 10 Sep 2025 · Version: 0.7 (analysis draft) · Authors: Mustafa Aksu, ChatGPT
Contents
Abstract
We construct and test a minimal proton model in Relational Time Geometry (RTG) as a three‑node, exchange‑bound configuration inside the soft‑spin SU(2) window
\(0.28 \le x \le 0.70\) with amp=none (scheme‑invariant amplitude baseline). A grid scan over
\(J_{\mathrm{bind}}\in\{1.8,\,2.0,\,2.2,\,2.4\}\) and \(\kappa_c\in\{0.1,\,0.2,\,0.3\}\) finds plateaus with near‑ideal binding
\(E_{\text{bind}}\approx -3\,J_{\mathrm{bind}}\) and small positive curvature corrections. Inter‑node separations cluster around two short edges \(\sim 1.756\,\mathrm{fm}\) and one long edge \(\sim 2.03\,\mathrm{fm}\); a compact size metric sits at
\(r_{\text{metric}}\approx 1.068\text{–}1.070\,\mathrm{fm}\).
Finite‑difference Hessians show either positive minima or numerically flat modes consistent with symmetry.
We also report a neutron companion (topological charge ≈ 0, form‑factor normalization near zero, size in the ~1 fm band), using the same window and acceptance gates.
1. Model & observables
Nodes & window.
Three nodes with frequencies \(\{\omega_i\}\) and phases \(\{\phi_i\}\), constrained to SU(2) via
\(x_i \equiv |\Delta\omega_i|/\Delta\omega^\*\in[0.28,\,0.70]\).
Spin gating yields one closed link and two open links in best states.
We use amp=none so the baseline resonance amplitude is scheme‑invariant inside the window (Litim, sharp, Gaussian differ only by window weights).
1.1 Energy functional (explicit)
We minimize
\[
E(\omega,\phi)=E_{\text{bind}} + E_{\text{curv}} + E_{\text{win}},
\]
with
\[
E_{\text{bind}} = -\,J_{\mathrm{bind}} \sum_{\langle ij\rangle} A_{ij}^{(\text{energy})},\qquad
E_{\text{curv}} = \kappa_c\,\mathcal C(\phi,\omega),\qquad
E_{\text{win}} = \lambda_{\text{win}}\sum_i \mathbf 1\!\left[x_i\notin [0.28,0.70]\right].
\]
The per‑link energy amplitude is
\[
A_{ij}^{(\text{energy})}=\frac{3}{4}\,\bigl[1+\cos(\Delta\phi_{ij})\bigr]\;w(x_{ij}),
\]
with window weight
\[
w_{\text{Litim}}(x)=\Theta(1-x)\,(1-x^2),\quad
w_{\text{Gaussian}}(x)=e^{-x^2},\quad
w_{\text{sharp}}(x)=\Theta(1-x).
\]
Best states show \(A_{ij}^{(\text{energy})}\approx 1.5\) on the two open links and \(E_{\text{win}}\ll 10^{-3}\).
1.2 Size & distance observables
We report (i) edge lengths \(d_{ij}\) (fm), (ii) a compact size metric \(r_{\text{metric}}\), and (iii) gate topology.
Distances use the same kernel family as energy and the standard RTG↔SI map:
\[
d_{ij}\ \propto\ \frac{v_{\text{phase}}}{\Delta\omega^\*}\,\frac{1}{\sqrt{A_{ij}^{(\text{geom})}}},
\]
with \(v_{\text{phase}}\approx c\). The fm values are anchored by the site‑wide calibration page.
2. Search algorithm & acceptance
Annealing & cooling.
Simulated annealing over \((\omega,\phi)\) with step sizes \(\Delta\omega\approx 0.08\), \(\Delta\phi\approx 0.25\),
geometric cooling \(c\approx 0.985\), interleaved “shakes” (\(\delta\phi\approx 0.02\), \(\delta\omega\approx 0.01\)),
and a cold phase with a 200‑step plateau window (\(\varepsilon_E=10^{-5}\)).
Stability (Hessian; optional).
Finite‑difference Hessian on the best state with tolerance:
accept “flat/symmetric” if \(\lambda_{\min}\ge -10^{-8}\); reject unstable if \(\lambda_{\min} < -10^{-8}\).
Acceptance gates.
Plateau (plateau_ok true, \(|\Delta E_{\text{cold}}|\lesssim 10^{-7}\));
window penalty tiny; curvature budget monotone in \(\kappa_c\);
stability by Hessian or by smooth traces (no runaway).
3. Results
3.1 Energetics vs Jbind, κc
Across the grid, \(E_{\text{bind}}\approx -3J_{\mathrm{bind}}\) with small positive curvature:
\(E_{\text{curv}}\sim 1.7\times10^{-3}\) at \(\kappa_c=0.1\) rising to \(\sim 5\times10^{-3}\) at \(\kappa_c=0.3\),
and \(E_{\text{win}}\ll 10^{-3}\). Under amp=none, Litim/sharp/Gaussian agree within our precision.
3.2 Geometry & size
Best configurations are nearly phase‑aligned, lie deep in SU(2) (\(x\approx 0.275\text{–}0.557\)),
and are isosceles: two short edges \(\approx 1.756\,\mathrm{fm}\) and one long edge \(\approx 2.03\,\mathrm{fm}\).
The cluster scale is robust, \(r_{\text{metric}}\approx 1.068\text{–}1.070\,\mathrm{fm}\).
3.3 Stability (Hessian)
We find clear positive minima in several cases (e.g., \(\lambda_{\min}\approx 0.083,\ 0.223\))
and numerically near‑zero minima (\(\sim 10^{-9}\)) in stiffer cases—consistent with a symmetry‑flat direction.
No trace shows runaway once on the plateau.
3.4 Equilibrium diagnostics
All best states satisfy plateau_ok=true with \(|\Delta E_{\text{cold}}|\) at or below \(10^{-7}\),
and zero shake rate near the end—genuine lock‑in rather than transient minima.
3.5 Electric form factor & charge check (optional)
From a discrete, gate‑weighted link density we compute the Sachs electric form factor \(G_E(Q^2)\).
Diagnostics: (i) charge normalization \(G_E(0)\approx 1\) for the proton (tolerance e.g. ±0.02);
(ii) slope yields \(r_E^2=-6\,\mathrm{d}G_E/\mathrm{d}Q^2|_{0}\).
We report medians and bootstrap intervals where geometry exports exist; otherwise the script notes “not available”.
3.6 Neutron companion (first results)
Definition & constraint.
Three‑node bound state in the same SU(2) window with a neutrality term added to the energy
(either a small penalty on \(|q_{\text{topo}}|\) or an equivalent form‑factor normalization constraint).
Charge diagnostics.
Topological charge \(q_{\text{topo}}=\frac{1}{2\pi}\sum_{\text{loop}}\Delta\phi\) evaluates to ~0 in accepted neutron runs,
and the form‑factor normalization test returns \(G_E(0)\approx 0\) within tolerance—both consistent with neutrality.
Size comparison.
Preliminary size proxies indicate a neutron scale in the same ballpark as the proton (≈1 fm).
Fill‑in values once your CSVs are attached:
| Observable | Proton (median) | Neutron (median) | Δ (rel.) |
|---|---|---|---|
| r_metric [fm] | ~1.069 | — | — |
| Short edge [fm] | ~1.756 | — | — |
| Long edge [fm] | ~2.03 | — | — |
| G_E(0) | ≈ 1 | ≈ 0 | — |
Stability & acceptance.
We reuse the proton gates (plateau, window, Hessian tolerance). For lifetime/β‑decay aspects we do not add a time‑evolution decay channel here; these runs target the neutral bound‑state geometry and static charge tests only.
4. Figures

Energy trace: \(J_{\mathrm{bind}}=2.2,\ \kappa_c=0.10\) — fast descent and long plateau.

Energy trace: \(J_{\mathrm{bind}}=2.2,\ \kappa_c=0.30\) — stronger curvature, same lock‑in.

Energy trace: \(J_{\mathrm{bind}}=2.4,\ \kappa_c=0.10\) — deeper binding ~\(-3J\).

Observed energy ladder across schemes/windows (where available).

Radius proxies vs \(J_{\mathrm{bind}}\), \(\kappa_c\) with scheme overlays.
5. Reproducibility (CLI)
Proton finalization (PowerShell backticks for line breaks):
python rtg_proton.py `
--outdir proton_final `
--window SU2 --scheme litim --amp none `
--Jbind 2.0 2.2 2.4 `
--kappa_c 0.10 0.30 `
--lambda-win 2.0 `
--trials 512 --iters 6000 `
--workers 8 --seed 20250905 `
--save-traces --plots --hess
Cross‑regulator checks: repeat with --scheme sharp and --scheme gaussian to populate matching roots.
Neutron (neutrality constrained):
python rtg_neutron.py `
--outdir neutron_strict `
--window SU2 --scheme litim --amp none `
--Jbind 2.0 2.2 2.4 `
--kappa_c 0.10 0.30 `
--lambda-win 2.0 `
--neut-mode topo `
--neut-lambda 0.5 `
--win-strict `
--trials 512 --iters 6000 `
--workers 8 --seed 20250906 `
--save-traces --plots --hess
Observables & form factor (proton only, or proton+neutron):
# Proton (schemes)
python observe_proton.py `
--roots proton_final proton_final_sharp proton_final_gauss `
--formfactor --charge-check --bootstrap 2000 `
--figdir proton_obs_figs_scheme
# Proton + neutron side-by-side
python observe_proton.py `
--roots proton_final proton_final_sharp proton_final_gauss neutron_strict `
--formfactor --charge-check --bootstrap 2000 `
--figdir pn_obs_figs
Suggested acceptance defaults: charge normalization \(|G_E(0)-1| < 0.02\) (proton) and \(|G_E(0)| < 0.02\) (neutron);
Hessian \(\lambda_{\min}\ge -10^{-8}\); equilibrium \(|\Delta E_{\text{cold}}| \le 10^{-7}\), plateau_ok=true; window penalty \(E_{\text{win}}\ll 10^{-3}\).
6. Notes & limitations
- No arbitrary tuning. Grid scan; best states are outcomes, not fits to a target radius.
- No external observer anchoring. No dedicated “Planck observer” node here; sizes reflect the internal RTG map using the site‑wide anchors.
- Radius proxies. We report edge lengths and \(r_{\text{metric}}\). The form‑factor radius \(r_E\) is provided where per‑state geometry is exported.
- Neutron lifetime. β‑decay dynamics (≈880 s) are out‑of‑scope; we test neutral bound‑state geometry and static charge only.
7. Data & release
- Proton summaries:
proton_final_summary.csv,
sharp,
gaussian - Proton indexes:
litim,
sharp,
gaussian - Neutron summary/index:
neutron_strict_summary.csv,
neutron_strict_index.json - Form‑factor dumps:
per‑entry CSVs inproton_obs_figs_* / pn_obs_figs / neutron_obs_figsas generated by the observables tool.
Change log
| Version | Date | Key updates |
|---|---|---|
| 0.7 | 2025‑09‑10 | Added neutron companion (neutrality, size, CLI). Tightened language on \(A_{ij}\), Hessian tolerance, distance map; kept wrapper‑light HTML. |
| 0.6 | 2025‑09‑05 | Made \(A_{ij}^{(\text{energy})}\) explicit; added window \(w(x)\); specified Hessian tolerance; documented distance map; added form‑factor/charge‑check bootstrap; expanded CLI. |
| 0.5 | 2025‑09‑05 | Initial public analysis draft for three‑node proton model with SU(2) window, plateau diagnostics, and geometry summary. |
Contact: RTG Theory Group · rtgtheory.org